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Noninvasive, glucose-monitoring technologies using infrared spectroscopy that have been studied
typically require a calibration process that involves blood collection, which renders the methods
somewhat invasive. We develop a truly noninvasive, glucose-monitoring technique using mid-
infrared spectroscopy that does not require blood collection for calibration by applying domain
adaptation (DA) using deep neural networks to train a model that associates blood glucose
concentration with mid-infrared spectral data without requiring a training dataset labeled with
invasive blood sample measurements. For realizing DA, the distribution of unlabeled spectral
data for calibration is considered through adversarial update during training networks for re-
gression to blood glucose concentration. This calibration improved the correlation coe±cient
between the true blood glucose concentrations and predicted blood glucose concentrations from
0.38 to 0.47. The result indicates that this calibration technique improves prediction accuracy for
mid-infrared glucose measurements without any invasively acquired data.
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1. Introduction

In recent years, the incidence of diabetes has in-
creased worldwide, thus, increasing the market de-
mand for noninvasive blood glucose-monitoring
technologies. Various methods have been proposed
for noninvasive blood glucose measurements,
including near-infrared sensing,1–3 mid-infrared
sensing,4 Raman spectroscopy,5 and photo-
acoustics.6,7 Of these options, the mid-infrared light
spectrum o®ers good detection accuracy because
glucose absorbs light particularly well at these
wavelengths. Practical applications of noninvasive
blood glucose measurement technologies are limited
by the measurement accuracy8 and require invasive
calibration steps for practical use.

Calibration is vital to ensure that glucose mea-
surements are robust against individual di®erences
and that the noninvasive measurement is maxi-
mally correlated with direct glucose concentration
readings.9–12 In these calibration routines, blood
sampling is indispensable to prepare training data;
to obtain highly accurate measurements, the blood
glucose level must be invasively measured at least
once. We propose a novel method to calibrate
noninvasive glucose measurements with spectral
data alone, which could lead to a truly noninvasive
blood glucose-monitoring system.

Machine-learning techniques have been used to
analyze a wide range of biomedical data for appli-
cations, including those for spectral analysis and
disease prediction.13–15 Previous studies have fo-
cused on creating regression models using super-
vised learning. Training data that are labeled with
reference measurements are required for normal
supervised learning. To avoid the need for a labeled
training dataset, we applied domain adaptation
(DA) using a deep neural network (NN) to learn a
model. When we have a model created from original
training data, DA can be used to adapt this model
to di®erent training data with no label information
having a distribution that is di®erent from that of
the original training data. DA is used, for example,
when adapting a person's spam ¯lter model to the
contents of other people's mail with di®erent con-
tent distributions.16

2. Materials and Methods

Previously, a method that measures light spectrum
absorbance in the oral mucosa has been proposed.17

We have developed a technique that transmits
optical signals using an attenuated total re°ection
(ATR) prism and a hollow optical ¯ber18 that e±-
ciently propagates mid-infrared light.19 We previ-
ously reported the accuracy of noninvasive blood
glucose level measurements that were obtained
using this device20,21; Fig. 1 shows an outline of the
measurement system. We measured the absorbance
of the oral mucosa using an ATR prism sandwiched
in the patient's inner lip. The ATR prism is made of
ZnS. Two Fourier-transform infrared spectroscopy
(FTIR) devices (Tensor 27, Bruker, Billerica,
Massachusetts, US and Vertex 70, Bruker) are used
as mid-infrared spectrometers. Measurements are
recorded using ATR prisms (prism 1 and prism 2) of
di®erent thicknesses in order to check whether the
prediction model of blood glucose level depends on
the design of the prism.

Tissues are generally considered as turbid media
with high scattering and absorption properties, and
in the mid-infrared region, light only penetrates
shallow tissue samples. Because the experimental
setup used in this study employed an ATR prism as
the probe, the light transmitted from the tissue was
not used, and only a few microns which the light of
the prism that bounced o® the re°ecting surface
were measured. Since the ATR prism exhibited a
large number of surface re°ections, it was possible
to sense the surface conditions with a good signal-
to-noise ratio (SNR). The oral mucosa was found to
be a suitable tissue for ATR-based sensing because
it did not include an epidermis layer. In this study,
we investigated the e®ect of the interstitial °uid on
the glucose levels via the vessel wall by applying this
method.

To collect reference data, we used two types
of self-administering glucose-monitoring devices

Fig. 1. Experimental setup and dimensions of ATR prism.
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(Medisafe Mini, Terumo, Tokyo, Japan and One-
Touch UltraView, Johnson and Johnson, New
Brunswick, New Jersey, US). As the blood glucose
levels measured by the two reference devices for the
same blood sample di®ered somewhat, the values
measured by the Medisafe Mini were corrected with
a linear equation so they matched those from the
OneTouch UltraView. Blood sampling and mea-
surements of blood glucose levels were initially
performed every 10min (this was done shortly after
the meals when signi¯cant changes were still likely
occurring), and thereafter, the time interval was
increased. The analyses were conducted for ap-
proximately 3 h until the blood glucose levels sta-
bilized. In addition, spectral measurements were
performed. However, the timing of blood sampling
and the number and timing of spectral measure-
ments did not always match, so the blood glucose
levels at the time of the spectral measurements
were obtained by linear interpolation of the glucose
levels obtained from the analysis of the blood
samples. We collected blood samples and simulta-
neously recorded the absorption spectrum of the
oral mucosa. Each dataset was collated from a se-
ries of measurements taken on a single day.

Two datasets, the characteristics of which are
listed in Table 1, were prepared from the measured
data. The labeled dataset, containing 131 data
points from 13 measurement series, was constructed
by requiring the subject to eat a variety of meals
before the measurements. The unlabeled dataset
contains 414 data points from 18 measurement
series. The subject in the labeled dataset was a
healthy male in his mid-20s. The subjects in the
unlabeled dataset were four healthy men and a
healthy woman with their age ranging from 30 to
50. Only one person participated in a series. For this

dataset, the measurements were performed after
eating various meals or drinking a glucose solution
(75 g of glucose dissolved in 150mL of water). The
unlabeled dataset also includes data acquired from
di®erent ATR prisms and di®erent FTIR devices.
Parentheses in the table indicate the number of the
corresponding measurement series. Our protocol
was approved by the ethical committee on the Use
of Humans as Experimental Subjects of Tohoku
University, and informed consent was obtained
from all examinees. Table 2 shows the minimum,
maximum, and average values (as well as the vari-
ance) obtained from the data points for a series of
datasets.

When considering a noninvasive glucose mea-
suring device for practical use, we have assumed the
following handling procedures for the two datasets:
Device manufacturers recorded the labeled dataset
to the device before shipment to create predictive
models. The user acquired the unlabeled dataset
after shipment and predicted the blood sugar levels
from the unlabeled dataset.

3. Calculations

Previously, we found that in the mid-infrared
spectrum, even when only three appropriately cho-
sen wavenumbers are used for predicting blood
glucose levels, the regression correlations were equal

Table 1. Dataset properties.

Labeled dataset Unlabeled dataset

The number of samples 131 414
The number of subjects 1 5
The number of series 13 18
Kind of meal (various meal or

glucose drink)
Various meal (13) Various meal (16)/Glucose drink (2)

FTIR apparatus Tensor (13) Vertex (5)/Tensor (13)
ATR prism Prism1 (13) Prism1 (3)/Prism2 (15)
Blood glucose monitor OneTouch

UltraView (13)
OneTouch UltraView (4)/Medisafe

Mini (14)
Data acquisition date 10/2016–1/2017 6/2015–11/2016

Table 2. Number of data points.

Labeled dataset Unlabeled dataset

Mean � SD 10.08 � 0.76 23.00 � 14.13
Min 9 9
Max 11 55

Unsupervised calibration for noninvasive glucose-monitoring devices
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to or higher than the correlations obtained when
using more wavenumbers.22 Partial least squares
regression (PLS),23 support vector machine,24 and
NN models25,26 have all been proposed as models to
predict blood glucose levels from spectrum data. In
addition, to avoid the di±culty of labeling a large
volume of data, transfer learning is often used to
apply learning results from one classi¯cation task to
other. Of the transfer learning techniques, DA
allows machine-learning models to successfully
predict test datasets when the training dataset
has di®erent distribution from the test dataset.
Domain-adversarial NNs (DANNs)27 have been
proposed to be an implementation of DA. Adver-
sarial updating in deep NNs improves prediction
accuracy. We used DANN to calibrate the algo-
rithm that associates spectral data with blood glu-
cose levels; the ability of DANN for unsupervised
learning allows calibrations without a training
dataset labeled with invasive blood samples.

3.1. Process °ow

Figure 2 shows the process °ow for the preproces-
sing, training, and evaluation of regression results.
We applied series cross-validation and multiple
linear regression (MLR) models to select an appro-
priate mid-infrared radiation for noninvasive blood
glucose measurements, and only wavenumbers
that had a high correlation unconditionally were
selected.22 The selected wavenumbers were 1050,
1070, and 1100 cm�1 and to reduce disturbances,
such as those caused by the contact pressure of the
prism, a wavenumber of 1000 cm�1 was used, which
has low absorption for normalization. Therefore, the

wavenumbers used for regressions were 1050 cm�1,
1070 cm�1, and 1100 cm�1, normalized at 1000 cm�1

for all data. Certain experimental conditions,
especially the contact pressure and temperature,
can a®ect spectroscopy measurements. Tempera-
ture changes are superimposed on the measured
value as the blackbody radiation spectrum of the
light source of the FTIR device, although this e®ect
can be eliminated by subtracting the background
from the FTIR measurement. The contact pressure
of the ATR prism can also a®ect the results, but due
to normalization at 1000 cm�1, this e®ect is mostly
canceled out. Because of the time taken by blood to
pass from vessels to tissue °uids,28 we used the
measured value from the self-measuring devices
delayed by 26min.22 Once the labeled and unlabeled
datasets were subjected to this preprocessing, the
labeled dataset was used as training data and each
series of the unlabeled dataset was used as test data.
Using the tests for each series, we tested the accu-
racy of regression with all the data in the unlabeled
dataset. When applying DA, the unlabeled dataset
was also used as an unlabeled training dataset.

Figure 3 illustrates the grouping of datasets.
Di®erences in color and shape in the ¯gure indicate
di®erences in series. All series in the labeled dataset
are labeled with blood glucose concentration, unla-
beled data from one series in the unlabeled dataset
are used for training, and the same series of the
unlabeled dataset is used for testing. This process is
repeated for each series in the unlabeled dataset,
and the regression accuracy is calculated. In the
training step, labels from the unlabeled dataset are
not included. Therefore, even though the same se-
ries from the unlabeled dataset are given in both

Fig. 2. Process °ow of training and evaluation of prediction results.
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training and testing, the true value of blood glucose
concentration is not provided during training. The
number of data points was 131 for supervised train-
ing, the average number of data points per data series
was 23 for unsupervised training, and 23 for the test.
No validation data were used. The unlabeled dataset
was used to predict the blood glucose levels obtained
by the user of the glucose-monitoring device, and we
assumed that the data had no labeled data of the
blood glucose level. Therefore, although it was used
for DA with no labeled data, it is not used for su-
pervised learning with the labeled data.

3.2. DANN for predicting blood
glucose levels

Figure 4 shows the con¯guration of the network
used as a regressor of blood glucose levels. The
network input is a set of absorbance values at
1050 cm�1, 1070 cm�1, and 1100 cm�1. Lx and Lcx
are the layers of the network used for regression and
classi¯cation, respectively, and wx and wcx label
the weights in the corresponding layers. A leaky
recti¯ed linear unit29,30 with a gradient ai ¼ 0:2
in the negative region is used for the activation

function. Batch normalization31 is also used for each
layer. Adam32 is used for optimization.

3.3. Training method

Figure 5 shows the training procedure used. First, in
step 1, we train the network to regress the blood
glucose level from the absorbance data in the la-
beled dataset. Then, in step 2, unlabeled absorbance
data from one series of unlabeled dataset are added
as input data and the network is trained to distin-
guish data in the labeled dataset from data in the
unlabeled dataset. In step 3, the network weights
for regression (w1, w2) are updated before branching
so that the labeled and unlabeled datasets are in-
distinguishable to the network. With this step, the
blood glucose levels can be regressed at the output
of L3 by extracting the features that are common to
the labeled and unlabeled datasets. Adversarial
updating in steps 2 and 3 increases the regression
accuracy by overlaying the distributions of labeled
and unlabeled datasets in L1–L3 layers. Therefore,
by adjusting deviations in the distributions in a
series from labeled and unlabeled datasets, the
network can estimate the blood glucose level con-
sidering the labeled and unlabeled datasets.

Training starts with step 1 using the supervised
data of the labeled dataset and trains the weights of
w1–w4 in 18,000 epochs. After 18,000 epochs, all
three steps including step 2 and step 3 were exe-
cuted simultaneously for 8000 epochs, and this
training process also used the unlabeled data in the
unlabeled dataset. To balance the regression and
DA processes, step 3 was only repeated in the

Fig. 3. Treatment of training data and test data.

Fig. 4. Network diagram of DANN.
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iteration in which the loss value of the regression in
step 1 was < 320. The loss value in step 3 is mul-
tiplied by 350 to balance it with the loss values in
step 1 and step 2. The training process runs for
26,000 epochs in total. All training data were ran-
domized at each epoch. The loss functions used are
the Euclidean loss for regression in step 1, and the
softmax cross entropy for classi¯cation in step 2 and
step 3. Note that an epoch in this report refers to a
period in which all data are used for training once.
The 18,000 and 8000 epochs were chosen to obtain
the best correlation coe±cient with all the test data
series (414 samples). It was necessary to search the
parameters using except the test data series to be
evaluated fundamentally. However, in this study,
only one of the 18 series required removal from the
parameter search, and since there was only a small
number of parameters that needed to be optimized,
the possibility that these would become over¯tted
was relatively low. Thus, we applied this method
due to limitations associated with the calculation
time.

4. Results and Discussion

The average values and variances obtained for the
three wavelengths of the two datasets are presented
in Table 3. Individual di®erences and variations in
the measurement environments (i.e., prism and

FTIR device di®erences) could explain the various
values observed.

Figure 6 shows the change of loss values at each
epoch of the training process. Each loss decreases as
training progresses. A decrease in the loss value of
step 1 indicates that the network is training re-
gression for the labeled dataset. If the loss value of
step 2 is decreasing, the network is training classi-
¯ers for the labeled and unlabeled datasets. If the
loss value of step 3 is decreasing, the training is
progressing such that the distributions of labeled
and unlabeled datasets overlap in the middle of the
regression network. If these losses are reduced and
well balanced, the network realizes DA.

Figure 7 shows a comparison of data distribu-
tions with and without DA in a typical series from
the unlabeled dataset. Figure 7(a) shows the data
input to the L1 layer, and Fig. 7(b) shows the
output results from the L3 layer. The three-dimen-
sional spectrum values of datasets are reduced and
plotted in two dimensions using principal compo-
nent analysis. The colors and shapes in the graph
indicate whether the data points are from the la-
beled or unlabeled datasets. At the input stage, the
distributions of labeled and unlabeled datasets are

Fig. 5. Algorithm for network training.

Table 3. Absorbance normalized by a wavenumber of
1000 cm�1 for each dataset.

Mean � SD

Wavenumber (cm�1) Labeled dataset Unlabeled dataset

1050 1.071 � 0.033 1.153 � 0.045
1070 1.103 � 0.039 1.182 � 0.053
1100 1.081 � 0.034 1.134 � 0.040

Fig. 6. Loss reduction in learning process.
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clearly shifted. In the output from the L3 layer,
however, the distributions are clearly superimposed,
which show that this network adjusts for the dif-
ferences of subjects between the labeled and unla-
beled datasets.

Next, Fig. 8 shows a comparison of prediction
accuracy with and without DA application, using
the Clark error grid,33 which is the commonly used
scatter diagram for evaluating the accuracy of glu-
cose-measuring devices. Figure 8(a) shows the Clark
error grid for the unlabeled dataset in the prediction
model trained from the labeled dataset series with
only step 1 executed so that DA was not applied.
For the result in which DA was applied, Fig. 8(b)
shows the Clark error grid for the unlabeled dataset

in the prediction model trained by executing all
three steps.

For the prediction model trained without DA,
the correlation coe±cient was 0.38, and 53.6% of
predictions fall into region A in the Clark error grid.
For the prediction model trained with DA, the
correlation coe±cient was 0.47, and 63.8% of pre-
dictions fall in region A in the Clark error grid. This
indicates that DA improves the correlation coe±-
cient and prediction accuracy. This result also
shows that calibration of the prediction model
without blood samples is possible with DA. Note
that the test data were measured under various
conditions such as recent meals, subjects, and the
experimental setups. Therefore, this correlation

(a) (b)

Fig. 7. Comparison of data distributions in typical series: (a) L1 input layer and (b) L3 output layer.

(a) (b)

Fig. 8. Clark error grid of the unlabeled dataset for the estimation models: (a) without DA and (b) with DA.
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result also shows that the model has unconditional
regression performance.

Next, we compare the results obtained by com-
paring the machine-learning models. Table 4 shows
the comparison of the correlation coe±cient in vari-
ous models and the percentage of data points in re-
gion A of the Clark error grid. It also shows the root
mean square error and the mean absolute di®erence
for the obtained data. The results for MLR and PLS
are reproduced from previous studies22 in which the
data were same as for this study. Table 4 also lists
results from an NN without DA and the present test
with a DANN using DA. All methods have the same
conditions, wherein calibration with blood sampling
was not performed. For methods other than DANN,
calibration was not performed for each series of the
unlabeled dataset. PLS also has a function for
wavenumber selection, so its inputs included wide-
spectrum absorbance values (every 2 cm�1 from
980 to 1200 cm�1). The other models' input
wavenumbers were 1050, 1070, and 1100 cm�1.

The result shows that PLS, which is generally
used for spectrum analysis, does not yield accept-
able results. We suspect that this poor performance
can be explained as an e®ect of over¯tting because
the wavenumber of the input spectrum was larger
than the number of data. NN models can handle
nonlinear components, which we assume that this
explains this approach's slightly better accuracy
over MLR. DANN shows the best results of the
methods we tested.

The prediction accuracy of the method was also
evaluated using a data series for a subject in the
situation of applying DA with another series of data
for the same person. However, the results varied
signi¯cantly depending on which data series was
applied for the DA. For example, when the DA
using di®erent data was applied for the same per-
son, good results were not always obtained, which
may be attributed to the di®erences in the data-
acquisition environment and the meal content, even

for the same subject. However, it was possible to
apply DA each time a data series was acquired when
considering the actual use. Therefore, the user of the
glucose-monitoring device could improve the pre-
diction accuracy for the acquired data series by
applying the DA method.

We also evaluated the prediction accuracy of the
method using series cross-validation in case all the
data from the labeled and unlabeled datasets were
used for supervised training. The obtained correla-
tion coe±cient was estimated to be 0.35, which was
lower than the NN obtained with only the labeled
dataset. This is because although measurement
conditions of labeled dataset were stable, measure-
ment conditions of the unlabeled dataset varied
widely, so the NN could not learn a suitable re-
gression model for blood glucose levels. For this
reason, it is better to learn the regression model
using data measured under stable conditions and
applying DA by DANN for each series.

There are a few potential reasons for the shifting
or distortion of the measurement series are as fol-
lows: First, there are individual di®erences in the
metabolic systems, and since this method does not
directly observe glucose, it is a®ected by metabo-
lism. Second, di®erent meal content has di®erent
e®ects on metabolism. Third, there are individual
structural di®erences in skin-depth direction.34

Fourth, there are structural di®erences in the hori-
zontal direction, which are also related to the po-
sition of the ATR probe.35 For di®erences related to
optical issues (refer to the third and fourth reasons),
calibration can be performed by selecting of optimal
area with respect to depth direction and horizontal
direction. On the contrary, our approach is based on
a machine-learning technique. By combining the
DA technique with the optical approach, it is
possible to calibrate not only optical di®erences
but also metabolism-based di®erences, which is
intended to serve as a foundation for further
improvements of the method.

Table 4. Comparison of models.

MLR22 PLS22 NN DANN

Correlation coe±cient 0.36 0.25 0.38 0.47
Percentage of data pointes in region A (%) 51.2 43.0 53.6 63.8
Root mean square error (mg/dl) 32.3 41.7 32.4 25.6
Mean absolute di®erence (mg/dl) 26.3 33.4 26.6 21.4
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Using the proposed DA method, blood sampling
at the time of calibration is rendered unnecessary.
This removes the major barrier in using noninvasive
glucose-monitoring technology. Without requiring
invasive calibration, prediction accuracy can be
improved at the time of actual use, which could
make noninvasive glucose-monitoring systems
available for home use. Additionally, this method
can be applied more generally to other medical
measurements that usually need to be calibrated for
use with each individual using invasively obtained
samples. For example, the technique can be applied
for noninvasive measurements of other blood
components.

5. Conclusion

We developed a method for calibrating mid-infrared
spectral blood glucose data without training data
derived from blood samples. We showed that a
DANN performing DA can be applied to unsuper-
vised calibration with unlabeled spectral data. The
training process was successful and improved the
correlation coe±cient and prediction error over
comparable methods. Using the method, blood
sampling at the time of calibration becomes un-
necessary and the accuracy of prediction of nonin-
vasive glucose-monitoring systems for home use can
be improved. In the future, we plan to test the ac-
curacy of this method with data collected from a
device that uses a laser light source, which would be
a more practical approach for patient use.
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